洛阳新闻,党建新农村建设,蔷靖潞影,杨雨婷 张书记
 
位置: 亚洲金融智库网 > 舆论公关 > 正文

量化投资的要求

时间:2021-04-28 18:15
本文关于量化投资的要求,据亚洲金融智库2021-04-28日讯:

1.量化投资都需要哪些数学基础知识

既然说到用数学模型,那数学和统计学的知识是必不可少的。由于国内金融市场尚不完备,一些衍生品交易受到限制,所以相较国外市场,能用到的数学/统计学知识也要少一些。对于非理工背景的投资者,需要补充基础的高等数学,线性代数,概率论,统计学,最优化理论等等学科的知识,这些内容可以在高校教科书中找到。对于一些新兴的利用机器学习的交易策略,还需要了解一些数据挖掘的知识。但既然是入门,这部分自然不是必要的。

另外,计量经济学的应用尤其广泛。进行策略研究时经常要面对大量的时间序列、面板数据。虽然在实践过程中更加注重策略结果,只要能赚钱的策略就是好策略,但在严谨的计量理论的支持下,回归结果更准确,能更好的刻画数据背后的关系,故往往更容易得到与预期相近的结果。其中,时间序列回归与截面、面板回归的逻辑与假设均有较大区别,且广泛用于刻画及预测金融资产的收益,波动。计量经济学的书籍推荐伍德里奇的《计量经济学导论:现代观点》;时间序列推荐布鲁克斯的《金融计量经济学导论》。

想学量化交易?做好这五点准备 /main/viewthread.php?tid=346169

2.量化投资

没有你想的书 我多年来都有关注这方面的书 可是也没有在国内找到 数量化投资是将投资理念及策略通过具体指标、参数的设计,体现到具体的模型中,让模型对市场进行不带任何情绪的跟踪;相对于传统投资方式来说,具有快速高效、客观理性、收益与风险平衡和个股与组合平衡等四大特点。

量化投资技术几乎覆盖了投资的全过程,包括估值与选股、资产配置与组合优化、订单生成与交易执行、绩效评估和风险管理等,在各个环节都有不同的方法及量化模型: 一、估值与选股 估值:对上市公司进行估值是公司基本面分析的重要方法,在“价值投资”的基本逻辑下,可以通过对公司的估值判断二级市场股票价格的扭曲程度,继而找出价值被低估或高估的股票,作为投资决策的参考。对上市公司的估值包括相对估值法和绝对估值法,相对估值法主要采用乘数方法,如PE估值法、PB估值法、PS估值法、PEG估值法、PSG估值法、EV/EBITDA估值法等;绝对估值法主要采用折现的方法,如公司自由现金流模型、股权自由现金流模型和股利折现模型等。

相对估值法因简单易懂,便于计算而被广泛使用;绝对估值法因基础数据缺乏及不符合模型要求的全流通假设而一直处于非主流地位。随着全流通时代的到来和国内证券市场的快速发展,绝对估值法正逐渐受到重视。

选股:在当前品种繁多的资本市场中,从浩瀚复杂的数据背后选出适合自己投资风格的股票变得越加困难。在基本面研究的基础上结合量化分析的手段就可以构建数量化选股策略,主流的选股方法如下: 资产配置方法与模型 资产配置类别 资产配置层次 资产配置方法 资产配置模型 战略资产配置 全球资产配置 大类资产配置 行业风格配置 收益测度 风险测度 估计方法 马克维茨 MV 模型 均值 -LPM 模型 VaR 约束模型 Black-Litterman 模型 战术资产配置 ( 动态资产配置 ) 周期判断 风格判断 时机判断 行业轮动策略 风格轮动策略 Alpha 策略 投资组合保险策略 基本面选股:通过对上市公司财务指标的分析,找出影响股价的重要因子,如:与收益指标相关的盈利能力、与现金流指标相关的获现能力、与负债率指标相关的偿债能力、与净资产指标相关的成长能力、与周转率指标相关的资产管理能力等。

然后通过建立股价与因子之间的关系模型得出对股票收益的预测。股价与因子的关系模型分为结构模型和统计模型两类:结构模型给出股票的收益和因子之间的直观表达,实用性较强,包括价值型(本杰明·格雷厄姆—防御价值型、查尔斯·布兰迪—价值型等)、成长型(德伍·切斯—大型成长动能、葛廉·毕克斯达夫—中大型成长股等)、价值成长型(沃伦·巴菲特—优质企业选择法、彼得·林奇—GARP价值成长法等)三种选股方法;统计模型是用统计方法提取出近似线性无关的因子建立模型,这种建模方法因不需先验知识且可以检验模型的有效性,被众多经济学家推崇,包括主成分法、极大似然法等。

多因素选股:通过寻找引起股价共同变动的因素,建立收益与联动因素间线性相关关系的多因素模型。影响股价的共同因素包括宏观因子、市场因子和统计因子(通过统计方法得到)三大类,通过逐步回归和分层回归的方法对三类因素进行选取,然后通过主成分分析选出解释度较高的某几个指标来反映原有的大部分信息。

多因素模型对因子的选择有很高的要求,因子的选择可依赖统计方法、投资经验或二者的结合,所选的因子要有统计意义上或市场意义上的显著性,一般可从动量、波动性、成长性、规模、价值、活跃性及收益性等方面选择指标来解释股票的收益率。 动量、反向选股:动量选股策略是指分析股票在过去相对短期的表现,事先对股票收益和交易量设定条件,当条件满足时买进或卖出股票的投资策略,该投资策略基于投资者对股票中期的反应不足和保守心理,在投资行为上表现为购买过去几个月表现好的股票而卖出过去几个月表现差的股票。

反向选股策略则基于投资者的锚定和过度自信的心理特征,认为投资者会对上市公司的业绩状况做出持续过度反应,形成对业绩差的公司业绩过分低估和业绩的好公司业绩过分高估的现象,这为投资者利用反向投资策略提供了套利机会,在投资行为上表现为买进过去表现差的股票而卖出过去表现好的股票。反向选股策略是行为金融学理论发展至今最为成熟,也是最受关注的策略之一。

二、资产配置 资产配置指资产类别选择、投资组合中各类资产的配置比例以及对这些混合资产进行实时管理。资产配置一般包括两大类别、三大层次,两大类别为战略资产配置和战术/动态资产配置,三大层次为全球资产配置、大类资产配置和行业风格配置。

资产配置的主要方法及模型如下: 战略资产配置针对当前市场条件,在较长的时间周期内控制投资风险,使得长期风险调整后收益最大化。战术资产配置通常在相对较短的时间周期内,针对某种具体的市场状态制定最优配置策略,利用市场短期波动机会获取超额收益。

因此,战术资产配置是在长期战略配置的过程中针对市场变化制定的短期配置策略,二者相互补充。战略资产配置为未来较长时间内的投资活动建立业务基准,战术。

3.应聘量化投资工作需要哪些技术

强烈的兴趣

想做好一件事情没有兴趣也只是三天打鱼两天晒网,最后不得而终,因此需要培养对投资形成强烈的兴趣,每根K线的波动能够刺激你的心脏随之不断跳动。

学习能力

量化交易是一门跨学科知识,必须有快速地问题解决能力和自学能力,懂得锲而不舍不断专研的试错法。研究生已经具备了较好的学习能力。

编程

编程很重要,现在Python是标配,matlab、R拿来做量化的人真的不多。虽然不是做开发,但是基本的简单编程知识还是要会。想学Python和Pandas,推荐 Python基础教程 和 《利用Python进行数据分析》,想学编程知识,推荐 《 代码大全 》 ,这本书没有什么代码,不要为名字所迷惑,不过如果想成为编程高手的话,看了绝不后悔。

看书一定要经典,不经典的书简直就是浪费生命,这三本书如果不想买,网上电子版肯定是很多的,话不多说。

量化知识

很多程序员开始转量化,但是金融知识和量化知识不够。经典的重要性在此显得更为重要,编程的书籍不看经典的我也能进步,可能会慢点,但是量化金融知识不看经典的书,那么可能就会南辕北辙,甚至影响到投资的整个生涯,不对,走偏了的话,就无生涯可谈。

投资的基础知识,比如股票债券基础知识,先来看看滋维博迪的 《投资学(原书第9版)》([美]滋维·博迪(Zvi Bodie)

再来一本干货,很多国内外研究生教程,介绍的更多的是衍生品,约翰赫尔的《期权、期货及其他衍生产品(原书第9版)》([加]约翰·赫尔(John C.Hull))

期权这么火,推荐 麦克米伦的《金融期货与期权丛书:期权投资策略(原书第5版)》([美]劳伦斯 G.麦克米伦(Lawrence G.McMillan))

想知道公募基金大佬如何做股票?李腾翻译的大作奉上,主动投资组合管理 创造高收益并控制风险的量化投资方法(原书第2版)

想知道私募基金怎么搞交易的?交易中有哪些技巧?以及如何在量化中走弯路?推荐 范撒普的 通向财务自由之路 ,这可不是一本关于财务分析、会计理论的书籍,真正理解了里面的思想,资金管理、风险控制你就不会纠结。

现在中产压力这么大,那么多人有中年职业危机,想知道怎么把交易当做全职?推荐 埃尔德 以交易为生,他可是将自己如何转行交易,并以交易作为自己的终身职业的心历路程和盘托出。

英语

你可以不说英语、听不懂英语,但最好是要看的懂英语,编程的原生环境是英语,quora、stackoverflow、github也是要求英语阅读能力,要是想用机器学习、深度学习做量化,那么多paper\article都是英语,读不懂怎么做的好?本来是谈量化入门,但好像谈到量化进阶了。

交易

没有途径,实战是最好的方法。确实不行,模拟交易也可以。

量化交易以思想为本,工具为用,路子不能走偏。

快速迭代

类似于实验,都是需要成千上万反反复复的检查、测试。在此,讲到了实验的快速开发和迭代,那么就顺便给个传送门:BigQuant - 人工智能量化投资平台 .,人生苦短,一定要快速迭代,缩短策略开发生命周期。因为你的想法上千个,可能只有几个有价值。

4.量化投资是什么 如何做量化投资

量化投资技术几乎覆盖了投资的全过程,包括量化选股、量化择时、股指期货套利、商品期货套利、统计套利、算法交易,资产配置,风险控制等。

1·量化选股

量化选股就是采用数量的方法判断某个公司是否值得买入的行为。根据某个方法,如果该公司满足了该方法的条件,则放入股票池,如果不满足,则从股票池中剔除。量化选股的方法有很多种,总的来说,可以分为公司估值法、趋势法和资金法三大类

2·量化择时

股市的可预测性问题与有效市场假说密切相关。如果有效市场理论或有效市场假说成立,股票价格充分反映了所有相关的信息,价格变化服从随机游走,股票价格的预测则毫无意义。众多的研究发现我国股市的指数收益中,存在经典线性相关之外的非线性相关,从而拒绝了随机游走的假设,指出股价的波动不是完全随机的,它貌似随机、杂乱,但在其复杂表面的背后,却隐藏着确定性的机制,因此存在可预测成分。

3·股指期货

股指期货套利是指利用股指期货市场存在的不合理价格,同时参与股指期货与股票现货市场交易,或者同时进行不同期限,不同(但相近)类别股票指数合约交易,以赚取差价的行为,股指期货套利主要分为期现套利和跨期套利两种。股指期货套利的研究主要包括现货构建、套利定价、保证金管理、冲击成本、成分股调整等内容。

4·商品期货

商品期货套利盈利的逻辑原理是基于以下几个方面 :

(1)相关商品在不同地点、不同时间对应都有一个合理的价格差价。

(2)由于价格的波动性,价格差价经常出现不合理。

(3)不合理必然要回到合理。

(4)不合理回到合理的这部分价格区间就是盈利区间。

5·统计套利

有别于无风险套利,统计套利是利用证券价格的历史统计规律进行套利,是一种风险套利,其风险在于这种历史统计规律在未来一段时间内是否继续存在。统计套利在方法上可以分为两类,一类是利用股票的收益率序列建模,目标是在组合的β值等于零的前提下实现alpha 收益,我们称之为β中性策略;另一类是利用股票的价格序列的协整关系建模,我们称之为协整策略。

6·期权套利

期权套利交易是指同时买进卖出同一相关期货但不同敲定价格或不同到期月份的看涨或看跌期权合约,希望在日后对冲交易部位或履约时获利的交易。期权套利的交易策略和方式多种多样,是多种相关期权交易的组合,具体包括:水平套利、垂直套利、转换套利、反向转换套利、跨式套利、蝶式套利、飞鹰式套利等。

7·算法交易

算法交易又被称为自动交易、黑盒交易或者机器交易,它指的是通过使用计算机程序来发出交易指令。在交易中,程序可以决定的范围包括交易时间的选择、交易的价格、甚至可以包括最后需要成交的证券数量。根据各个算法交易中算法的主动程度不同,可以把不同算法交易分为被动型算法交易、主动型算法交易、综合型算法交易三大类。

8·资产配置

资产配置是指资产类别选择,投资组合中各类资产的适当配置以及对这些混合资产进行实时管理。量化投资管理将传统投资组合理论与量化分析技术的结合,极大地丰富了资产配置的内涵,形成了现代资产配置理论的基本框架。

它突破了传统积极型投资和指数型投资的局限,将投资方法建立在对各种资产类股票公开数据的统计分析上,通过比较不同资产类的统计特征,建立数学模型,进而确定组合资产的配置目标和分配比例。

5.做好量化交易需要具备什么

心态、内功非常重要,最重要的是工具和策略原学福慧投资法(又名原学道行投资法)原学博大精深,原学不仅是出世的学问,也是入世的学问!原学不仅研究“道”,也研bai究“术”!不仅研究“体”,也研究“用”。

原学是“体”与“用”结合最好的世间学问!du原学无用无不用!原学用于投资,独创原学福慧投资法(原学道行投资法),就是“体”与“用”充分结合的最好例证!俗话说:“zhi小隐隐于野,大隐隐于市”。我们原学还要加一句:“超隐隐于投资”!投资市场(股票、期货、期权等)存于世间几百年时间,不乏很多有效的方法,但是成功者却寥寥无几,乏善可陈。

其根本原因不在于投资方法的是dao否有效,而在于投资者的“心”!在于投资者在投资过程中如何有效地控制住“本我”,做到投资过程中不起心不动念!这比学习证券投资方法要难上千倍!原学福慧投资法(原学道行投资法)不仅教大家最有效的证券投资“术”,还要花更多的时间教大家证券投资“道”,教大家“内投资禅”,提高投资者的道行,在物欲横流的投资中禅定,在禅定中投资!容保证投资者在投资赚钱的过程中还能“明心见性”!最终还能将投资利润回馈社会,兼济天下,天下为公。

6.到底什么是量化投资

对于量化投资很多人都不理解,微量网指出其实,就如同中医和西医的区别,中医靠经验,讲究“望、闻、问、切、听”,西医靠指标,通过一系列的检查数据综合判断病情。

量化投资无非就是用指标和公式 驱动投资和交易。还是举淘宝的例子,卖家需要考虑安排今年双十一的客服配备和商品物流安排,如果卖家根据去年的经验判断,“中午的时候买家比较多”从而在 中午增倍客服,并预约好物流,这就是定性投资。

如果卖家使用云计算对自己去年双十一的销售大数据进行了建模分析,发现“11:25至 12:15,12:45—13:30”的时段交易最活跃,并因此倍增客服、预约物流,这就是微量网量化投资。

7.什么是量化投资 量化投资的特点

数量化投资、程序化交易、算法交易、自动化交易以及高频交易都是数量化交易的特定方式, 其描述内容的侧重点各有不同。数量化交易应用IT技术和金融工程模型偶那个帮助投资者指定投资策略、减少执行成本、进行套利和风险对冲。数据、速度、风险管理是数量化交易系统建设中的关键问题。期货市场的数量化自动交易模型正逐步由投资者编制自用,演变为有一定规模的投资咨询顾问组成的专业团队参与。

程序化交易,也可称之为系统交易或算法交易,设计人员将市场常用之技术指标,利用电脑软件将其写入系统中,结合市场历史数据,分析和组合各种指标建立数学模型,将交易策略系统化。当交易策略的条件满足时,程序化系统自动发出多空讯号,并且有效掌握价格变化的趋势,让投资人不论在上涨或下跌的市场行情中,都能抓住交易策略,进而赚取波段获利。程序化交易的操作方式不求赚取夸张利润,只求长期稳健的获利,于市场中成长并达到财富累积的复利效果。经过长时期操作,年获利率可保持在一定水准之上。

程序化交易又是一种个性化交易,每个投资者(或机构)都可以根据自己的投资经验和智慧,编写自己的交易模型,进行电脑自动交易。交易模型是交易思想的凝练和实际化,正确的交易思想在。数量化投资、程序化交易、算法交易、自动化交易以及高频交易都是数量化交易的特定方式, 其描述内容的侧重点各有不同。数量化交易应用IT技术和金融工程模型偶那个帮助投资者指定投资策略、减少执行成本、进行套利和风险对冲。数据、速度、风险管理是数量化交易系统建设中的关键问题。期货市场的数量化自动交易模型正逐步由投资者编制自用,演变为有一定规模的投资咨询顾问组成的专业团队参与。

程序化交易,也可称之为系统交易或算法交易,设计人员将市场常用之技术指标,利用电脑软件将其写入系统中,结合市场历史数据,分析和组合各种指标建立数学模型,将交易策略系统化。当交易策略的条件满足时,程序化系统自动发出多空讯号,并且有效掌握价格变化的趋势,让投资人不论在上涨或下跌的市场行情中,都能抓住交易策略,进而赚取波段获利。程序化交易的操作方式不求赚取夸张利润,只求长期稳健的获利,于市场中成长并达到财富累积的复利效果。经过长时期操作,年获利率可保持在一定水准之上。

程序化交易又是一种个性化交易,每个投资者(或机构)都可以根据自己的投资经验和智慧,编写自己的交易模型,进行电脑自动交易。交易模型是交易思想的凝练和实际化,正确的交易思想在严格的操作纪律实行下将获得良好、稳定的投资收益,而通过交易模型正是将正确的交易思想与严格的操作纪律很好地结合在一起,帮助人们获取良好、稳定的投资收益。程序化交易在投资实战中不仅可以提高下单速度,更可以帮助投资者避免受到情绪波动的影响,消除交易时人性的恐惧、贪婪、迟疑及赌性等情绪,实现理性投资。

设计出色的程序化系统可以确保广为流传的交易成功三项基本原则的顺利实施:顺应市场趋势、控制亏损交易、做足盈利交易。

总而言之,模型策略的出色设计、资金的有效风险控制、行情交易软件的稳定可靠、数据的及时流畅以及下单速度的快捷,组成了优秀的程序化交易系统,它是量化投资的一种具体实现途径。

量化投资的要求


专题推荐:
打印此文】 【关闭窗口】【返回顶部
·上一篇:能力和知识?公关人员需要哪些素质? ·下一篇:没有了
相关文章
推荐文章
最新图文


亚洲金融智库网版权所有
  亚洲金融智库网主要提供风险管控,网络安全,舆论公关,金融法务,金融培训等相关资讯。